The independence of the covering numbers of the splitting tree forcing ideal and the Sacks forcing ideal

Marek Wyszkowski Christian Albrecht Universität zu Kiel

February 2, 2012

Countably splitting analytic sets

Definition

A set $A \subseteq 2^{\omega}$ is called countably splitting *iff* for each countable $B \subseteq [\omega]^{\omega}$ there is a $x \in A$ such that x splits every $b \in B$ i.e.: $|x^{-1}[0] \cap b| = \aleph_0$ and $|x^{-1}[1] \cap b| = \aleph_0$

Theorem (O.Spinas 2004)

For $A \subseteq 2^{\omega}$ analytic holds: A countably splitting iff there exists a splitting tree p with $[p] \subseteq A$

Splitting Tree Forcing

Definition

A perfect Tree $p \subseteq 2^{<\omega}$ is called splitting *iff* $\forall \sigma \in p \exists K(\sigma) \forall n \ge K(\sigma) \exists \tau_0, \tau_1 \supseteq \sigma : |\tau_0|, |\tau_1| \ge n \land \tau_0(n) = 0 \land \tau_1(n) = 1$

We let S denote the Forcing consisting of all splitting trees ordered by inclusion. The generic real added by this Forcing splits all $b \in [\omega]^{\omega}$ of the ground model.

Definition

Let $I(S) := \{X \subseteq 2^{\omega} \mid \forall p \in S \exists q \leq p : [q] \cap X = \emptyset\}$ be the Ideal generated by the splitting tree forcing.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Main Theorem

Theorem (Wy 2011)

 $V_{\omega_2}^{\mathcal{S}}\models \mathit{Cov}(I(\mathbb{S}))<\mathit{Cov}(I(\mathcal{S}))$

 $V_{\omega_2}^{S} \models \operatorname{Cov}(I(S)) = \omega_2$ is shown analogously to $V_{\omega_2}^{\mathbb{S}} \models \operatorname{Cov}(I(\mathbb{S})) = \omega_2$ which has been done by Judah, Miller and Shelah, so the focus of this talk will be to show that $V_{\omega_2}^{S} \models \operatorname{Cov}(I(\mathbb{S})) = \omega_1$

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

イロト イポト イヨト イヨト

Definition

$$(q,G) \leq (p,F): \Leftrightarrow$$

M. Wyszkowski ()

○ q ≤ p

イロト イポト イヨト イヨト

Definition $(q, G) \le (p, F) : \Leftrightarrow$ $q \le p$ F is a Front of p and G is a Front of q

3

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

- $(q,G) \leq (p,F):\Leftrightarrow$
 - **○** q ≤ p
 - **2** F is a Front of p and G is a Front of q
 - \bigcirc G strictly refines F

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

- **○** q ≤ p
- **2** F is a Front of p and G is a Front of q
- G strictly refines F

3

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

2 F is a Front of p and G is a Front of q

G strictly refines F

Definition

Let $\alpha \in OR$; $H \in [\alpha]^{<\omega}$ For $p \in S_{\alpha}$ we call the set \dot{F} an H-Front of p iff

э

-

< 1[™] >

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

- 2 F is a Front of p and G is a Front of q
- G strictly refines F

Definition

Let
$$\alpha \in OR$$
; $H \in [\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set F an H -Front of p iff

• \dot{F} is a function with $dom(\dot{F}) = H$ and $\dot{F}(\beta)$ is a S_{β} -Name

э

< E

< ∃ >

< 17 ▶

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

- 2 F is a Front of p and G is a Front of q
- G strictly refines F

Definition

Let
$$\alpha \in OR$$
; $H \in [\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H -Front of p iff

- \dot{F} is a function with $dom(\dot{F}) = H$ and $\dot{F}(\beta)$ is a S_{β} -Name
- ② if $\emptyset \in H$ then $F(\emptyset)$ is a front of $p(\emptyset)$

< 47 ▶

Definition

 $(q,G) \leq (p,F):\Leftrightarrow$

2 F is a Front of p and G is a Front of q

G strictly refines F

Definition

Let
$$\alpha \in OR$$
; $H \in [\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H -Front of p iff

- \dot{F} is a function with $dom(\dot{F}) = H$ and $\dot{F}(\beta)$ is a S_{β} -Name
- ② if $\emptyset \in H$ then $F(\emptyset)$ is a front of $p(\emptyset)$
- **◎** for all $\beta \in H$ with $\emptyset < \beta$ we have that $p \upharpoonright \beta \Vdash F(\beta)$ is a Front of $p(\beta)$

< 回 > < 三 > < 三

Definition

Let $\alpha \in OR$; $p, q \in S_{\alpha}$; \dot{F}, \dot{G} regarding *H*-Fronts Define $(q, \dot{G}) \leq_H (p, \dot{F})$: \Leftrightarrow

• if $\emptyset \in H$ then $(q(\emptyset), \dot{G}(\emptyset)) \leq (p(\emptyset), \dot{F}(\emptyset))$

2 for all β ∈ H; Ø < β we have $q \upharpoonright \beta \Vdash (q(β), \dot{G}(β)) \le (p(β), \dot{F}(β))$

Definition

Let $\alpha \in OR$; $p, q \in S_{\alpha}$; F, G regarding H-Fronts Define $(q, G) \leq_H (p, F)$: \Leftrightarrow

• if $\emptyset \in H$ then $(q(\emptyset), \dot{G}(\emptyset)) \leq (p(\emptyset), \dot{F}(\emptyset))$

2 for all $\beta \in H$; $\emptyset < \beta$ we have $q \upharpoonright \beta \Vdash (q(\beta), G(\beta)) < (p(\beta), F(\beta))$

Definition

Let $\alpha \in OR$; $p \in S_{\alpha}$; $H \in [supp(p)]^{<\omega}$ and F be a H-Front for p. We say that p is (H, F)-decided iff: For all $\overline{\sigma} \in H$ $(2^{<\omega})$:either

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$ Then there exits a $q \leq p$ and a Sequence $\langle H_i; \dot{F}_i; k_i | i \in \omega \rangle$ such that

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$

- **2** F_i is a H_i -Front for q;
- **3** $(q, \dot{F}_{i+1}) \leq_{H_{i+1}} (q, \dot{F}_i);$

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$

- **2** F_i is a H_i -Front for q;
- **3** $(q, \dot{F}_{i+1}) \leq_{H_{i+1}} (q, \dot{F}_i);$
- q is (H_i, F_i)-decided;

Lemma (Wy 2011)

Let $\alpha \in OR$; $p \in S_{\alpha}$ and \dot{x} a S_{α} -Name for a real such that for all $\xi < \alpha$: $p \Vdash \dot{x} \notin V_{\xi}$

Then there exits a $q \leq p$ and a Sequence $\langle H_i; F_i; k_i | i \in \omega \rangle$ such that

- **2** \dot{F}_i is a H_i -Front for q;
- **3** $(q, \dot{F}_{i+1}) \leq_{H_{i+1}} (q, \dot{F}_i);$
- q is (H_i, \dot{F}_i) -decided;

. . .

Lemma (continued)

...and there exists a Family $\{\xi_{\overline{\sigma}} \in 2^{<\omega} | \overline{\sigma} \in \bigcup_{i \in \omega} \dot{F}_i\}$ such that

3

Lemma (continued)

...and there exists a Family $\{\xi_{\overline{\sigma}} \in 2^{<\omega} | \overline{\sigma} \in \bigcup_{i \in \omega} \dot{F}_i\}$ such that

$$I for every \ i \in \omega \ and \ \overline{\sigma} \in \dot{F}_i: \ q_{\overline{\sigma}} \Vdash \xi_{\overline{\sigma}} \subseteq \dot{x}$$

- ∢ ⊒ →

◆ □ ▶ ◆ □ ▶

Lemma (continued)

...and there exists a Family $\{\xi_{\overline{\sigma}} \in 2^{<\omega} | \overline{\sigma} \in \bigcup_{i \in \omega} \dot{F}_i\}$ such that

• for every $i \in \omega$ and $\overline{\sigma} \in \dot{F}_i$: $q_{\overline{\sigma}} \Vdash \xi_{\overline{\sigma}} \subseteq \dot{x}$

2) for every
$$i \in \omega$$
 and $\overline{\sigma} \in F_i$: $length(\xi_{\overline{\sigma}}) \geq k_i$

- 20

Lemma (continued)

...and there exists a Family $\{\xi_{\overline{\sigma}} \in 2^{<\omega} | \overline{\sigma} \in \bigcup_{i \in \omega} \dot{F}_i\}$ such that

• for every $i \in \omega$ and $\overline{\sigma} \in \dot{F}_i$: $q_{\overline{\sigma}} \Vdash \xi_{\overline{\sigma}} \subseteq \dot{x}$

8 for every $i \in \omega$ and $\overline{\sigma} \in F_i$: $length(\xi_{\overline{\sigma}}) \ge k_i$

 for two indices σ̄, σ̄' that are incompatible in at least one coordinate we have ξ_σ⊥ξ_{σ̄'}

Reminder:

We now want to show that $V_{\omega_2}^{\mathcal{S}} \models \operatorname{Cov}(I(\mathbb{S})) = \omega_1$

Proof.

- Let $\langle q_{\lambda} \mid \lambda < \omega_2 \rangle$ an enumeration of some arbitrary dense Set $D \in V_{\omega_2}^S$ of Sacks conditions
- Try to build a matrix $\langle q_{\xi\lambda} | \xi < \omega_1; \lambda < \omega_2 >$ with $q_{\xi\lambda} \leq q_{\lambda}$ such that for any new real $x \in V^S_{\omega_2}$ there is a row ξ with $x \notin [q_{\xi\lambda}]$ for all $\lambda < \omega_2$
- The sets $X_{\xi} := 2^{\omega} \setminus \bigcup_{\lambda < \omega_2} [p_{\xi \lambda}]$ are Sacks Ideal sets that cover all (new) reals

通 ト イ ヨ ト イ ヨ ト

Proof continued.

- assign to each new real x a condition of the generic filter that witnesses the injective continuous reading of names and the regarding family $P := \{\xi_{\overline{\sigma}} \mid \overline{\sigma} \in \bigcup_{i \in \omega} \dot{F}_i\}$ as in the previous lemma
- "throw away" the information about the exact position of the coordinates by collapsing the support of that condition to some δ < ω₁ and adjusting the F_i and the the σ accordingly
- this will give us one of ω₁-many functions f : σ̄ → ξ_{σ̄} with [f⁻¹x] being a sequence of generic reals of the support (without the information where exactly they occur)

Proof continued.

Thin out the the q_{λ} from the dense set to some $q_{f\lambda}$ in the following way:

• Case 1: $q_{\lambda} \not\subseteq P$. You can easily find a perfect $q_{f\lambda} \leq q_{\lambda}$ with $[q_{f\lambda}] \cap [P] = \emptyset$. It follows that every new real that has the function f assigned to it is not an element of $[q_{f\lambda}]$. So we are done

Proof continued.

Case 2: q_λ ⊆ P. Let q_λ ∈ V^S_γ By a fusion argument you can thin out q_λ to q'_{fλ} such that for each coordinate ξ < δ we have [π_ξf⁻¹q'_{fλ}] ⊆ V_γ. This means that every real that has assigned the function f to it and is an element of [q'_{fλ}] is introduced in an intermediate model V_α with α ≤ γ
So if you pick a q_{fλ} ≤ q'_{fλ} such that its closure is disjoint to V_γ, the closure wont contain any reals with the function f assigned to it

...more results

Theorem (Baumgartner Laver 1979)

Every real in $V_{\omega_2}^{\mathbb{S}}$ is refined by a ground model real

Corollary

$$V_{\omega_2}^{\mathbb{S}}\models Cov(I(S))=\omega_1$$

Corollary

$$V_{\omega_2}^{\mathbb{S}}\models Cov(I(S)) < Cov(I(\mathbb{S}))$$

(4回) (4回) (4回) (回)

open questions

- $\operatorname{add}(I(S)) < \operatorname{add}(I(\mathbb{S}))$?
- $\operatorname{add}(I(S)) > \operatorname{add}(I(\mathbb{S}))$?
- Is there a (non-natural) amoeba forcing for the splitting tree forcing that is proper and minimal?
- ZFC $\vdash Cov(I(S)) \leq Cov(M)$?

3

→ ∃ →

Thank You for Your attention

э

< □ > < 同 >