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Countably splitting analytic sets

Definition
A set A ⊆ 2ω is called countably splitting iff for each countable B ⊆ [ω]ω

there is a x ∈ A such that x splits every b ∈ B
i.e.: |x−1[0] ∩ b| = ℵ0 and |x−1[1] ∩ b| = ℵ0

Theorem (O.Spinas 2004)
For A ⊆ 2ω analytic holds: A countably splitting iff there exists a splitting
tree p with [p] ⊆ A
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Splitting Tree Forcing

Definition
A perfect Tree p ⊆ 2<ω is called splitting iff
∀σ ∈ p∃K (σ)∀n ≥ K (σ)∃τ0, τ1 ⊇ σ : |τ0|, |τ1| ≥ n ∧ τ0(n) = 0 ∧ τ1(n) = 1

We let S denote the Forcing consisting of all splitting trees ordered by
inclusion. The generic real added by this Forcing splits all b ∈ [ω]ω of the
ground model.

Definition
Let I(S) := {X ⊆ 2ω | ∀p ∈ S∃q ≤ p : [q] ∩ X = ∅} be the Ideal
generated by the splitting tree forcing.
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Main Theorem

Theorem (Wy 2011)
V S
ω2 |= Cov(I(S)) < Cov(I(S))

V S
ω2 |=Cov(I(S)) = ω2 is shown analogously to V S

ω2 |=Cov(I(S)) = ω2
which has been done by Judah, Miller and Shelah, so the focus of this talk
will be to show that V S

ω2 |=Cov(I(S)) = ω1
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Basic Definitions
Definition
(q,G) ≤ (p,F ) :⇔

1 q ≤ p
2 F is a Front of p and G is a Front of q
3 G strictly refines F
4 ∀σ ∈ F ; j ∈ ω : p(σ)[j] = q(σ)[j]

Definition
Let α ∈ OR;H ∈ [α]<ω

For p ∈ Sα we call the set Ḟ an H-Front of p iff
1 Ḟ is a function with dom(Ḟ ) = H and Ḟ (β) is a Sβ-Name
2 if ∅ ∈ H then ˙F (∅) is a front of p(∅)
3 for all β ∈ H with ∅ < β we have that p � β  ˙F (β) is a Front of p(β)
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Basic Definitions

Definition
Let α ∈ OR; p, q ∈ Sα; Ḟ , Ġ regarding H-Fronts
Define (q, Ġ) ≤H (p, Ḟ ) :⇔

1 if ∅ ∈ H then (q(∅), Ġ(∅)) ≤ (p(∅), Ḟ (∅))
2 for all β ∈ H; ∅ < β we have q � β  (q(β), Ġ(β)) ≤ (p(β), Ḟ (β))

Definition
Let α ∈ OR; p ∈ Sα; H ∈ [supp(p)]<ω and Ḟ be a H-Front for p.
We say that p is (H, Ḟ )-decided iff: For all σ ∈H (2<ω) :either

1 ∀β ∈ H : (p � β) � (σ � β)  σ(β) ∈ Ḟ (β) or
2 ∃γ ∈ H∀β ∈ H;β < γ : (p � β) � (σ � β)  σ(β) ∈ Ḟ (β)
∧ (p � γ) � (σ � γ)  σ(γ) /∈ Ḟ (γ)
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Injective continuous reading

Lemma (Wy 2011)
Let α ∈ OR; p ∈ Sα and ẋ a Sα-Name for a real such that for all ξ < α:
p  ẋ /∈ Vξ
Then there exits a q ≤ p and a Sequence < Hi ; Ḟi ; ki |i ∈ ω > such that

1 Hi ∈ [α]<ω; Hi+1 ⊇ Hi ;
⋃

i∈ω Hi = supp(q)
2 Ḟi is a Hi -Front for q;
3 (q, Ḟi+1) ≤Hi+1 (q, Ḟi);
4 q is (Hi , Ḟi)-decided;
5 ki ∈ ω; ki+1 > ki for all i ∈ ω

...
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Injective continuous reading

Lemma (continued)
...and there exists a Family {ξσ ∈ 2<ω|σ ∈

⋃
i∈ω Ḟi} such that

1 for every i ∈ ω and σ ∈ Ḟi : qσ  ξσ ⊆ ẋ
2 for every i ∈ ω and σ ∈ Ḟi : length(ξσ) ≥ ki
3 for two indices σ, σ′ that are incompatible in at least one coordinate

we have ξσ⊥ξσ′
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Proof of the Theorem

Reminder:
We now want to show that V S

ω2 |=Cov(I(S)) = ω1

Proof.
Let < qλ | λ < ω2 > an enumeration of some arbitrary dense Set
D ∈ V S

ω2 of Sacks conditions
Try to build a matrix < qξλ|ξ < ω1;λ < ω2 > with qξλ ≤ qλ such
that for any new real x ∈ V S

ω2 there is a row ξ with x /∈ [qξλ] for all
λ < ω2

The sets Xξ := 2ω \
⋃
λ<ω2 [pξλ] are Sacks Ideal sets that cover all

(new) reals
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Proof of the Theorem

Proof continued.
assign to each new real x a condition of the generic filter that
witnesses the injective continuous reading of names and the regarding
family P := {ξσ | σ ∈

⋃
i∈ω Ḟi} as in the previous lemma

”throw away” the information about the exact position of the
coordinates by collapsing the support of that condition to some
δ < ω1 and adjusting the Ḟi and the the σ accordingly
this will give us one of ω1-many functions f : σ 7→ ξσ with [f −1x ]
being a sequence of generic reals of the support (without the
information where exactly they occur)
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Proof of the Theorem

Proof continued.
Thin out the the qλ from the dense set to some qf λ in the following way:

Case 1: qλ * P. You can easily find a perfect qf λ ≤ qλ with
[qf λ] ∩ [P] = ∅. It follows that every new real that has the function f
assigned to it is not an element of [qf λ]. So we are done
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Proof of the Theorem

Proof continued.
Case 2: qλ ⊆ P. Let qλ ∈ V S

γ By a fusion argument you can thin out
qλ to q′f λ such that for each coordinate ξ < δ we have
[πξf −1q′f λ] ⊆ Vγ . This means that every real that has assigned the
function f to it and is an element of [q′f λ] is introduced in an
intermediate model Vα with α ≤ γ
So if you pick a qf λ ≤ q′f λ such that its closure is disjoint to Vγ , the
closure wont contain any reals with the function f assigned to it
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...more results

Theorem (Baumgartner Laver 1979)
Every real in V S

ω2 is refined by a ground model real

Corollary
V S
ω2 |=Cov(I(S)) = ω1

Corollary
V S
ω2 |=Cov(I(S)) <Cov(I(S))
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open questions

add(I(S)) < add(I(S)) ?
add(I(S)) > add(I(S)) ?
Is there a (non-natural) amoeba forcing for the splitting tree forcing
that is proper and minimal?
ZFC `Cov(I(S)) ≤Cov(M) ?
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Thank You for Your attention

M. Wyszkowski () The independence of the covering numbers of the splitting tree forcing ideal and the Sacks forcing idealFebruary 2, 2012 15 / 15


