The independence of the covering numbers of the splitting tree forcing ideal and the Sacks forcing ideal

Marek Wyszkowski
Christian Albrecht Universität zu Kiel

February 2, 2012

Countably splitting analytic sets

Definition

A set $A \subseteq 2^{\omega}$ is called countably splitting iff for each countable $B \subseteq[\omega]^{\omega}$ there is a $x \in A$ such that x splits every $b \in B$
i.e.: $\left|x^{-1}[0] \cap b\right|=\aleph_{0}$ and $\left|x^{-1}[1] \cap b\right|=\aleph_{0}$

Theorem (O.Spinas 2004)
For $A \subseteq 2^{\omega}$ analytic holds: A countably splitting iff there exists a splitting tree p with $[p] \subseteq A$

Splitting Tree Forcing

Definition

A perfect Tree $p \subseteq 2^{<\omega}$ is called splitting iff $\forall \sigma \in p \exists K(\sigma) \forall n \geq K(\sigma) \exists \tau_{0}, \tau_{1} \supseteq \sigma:\left|\tau_{0}\right|,\left|\tau_{1}\right| \geq n \wedge \tau_{0}(n)=0 \wedge \tau_{1}(n)=1$

We let S denote the Forcing consisting of all splitting trees ordered by inclusion. The generic real added by this Forcing splits all $b \in[\omega]^{\omega}$ of the ground model.

Definition

Let $I(S):=\left\{X \subseteq 2^{\omega} \mid \forall p \in S \exists q \leq p:[q] \cap X=\emptyset\right\}$ be the Ideal generated by the splitting tree forcing.

Main Theorem

Theorem (Wy 2011)

$V_{\omega_{2}}^{S} \models \operatorname{Cov}(I(\mathbb{S}))<\operatorname{Cov}(I(S))$
$V_{\omega_{2}}^{S} \models \operatorname{Cov}(I(S))=\omega_{2}$ is shown analogously to $V_{\omega_{2}}^{\mathbb{S}} \models \operatorname{Cov}(I(\mathbb{S}))=\omega_{2}$ which has been done by Judah, Miller and Shelah, so the focus of this talk will be to show that $V_{\omega_{2}}^{S} \models \operatorname{Cov}(I(\mathbb{S}))=\omega_{1}$

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(c) F is a Front of p and G is a Front of q

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q

- G strictly refines F

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q

- G strictly refines F
(- $\forall \sigma \in F ; j \in \omega: p(\sigma)[j]=q(\sigma)[j]$

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q
(0) G strictly refines F

- $\forall \sigma \in F ; j \in \omega: p(\sigma)[j]=q(\sigma)[j]$

Definition

Let $\alpha \in O R ; H \in[\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H-Front of p iff

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q
(0) G strictly refines F
(-) $\forall \sigma \in F ; j \in \omega: p(\sigma)[j]=q(\sigma)[j]$

Definition

Let $\alpha \in O R ; H \in[\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H-Front of p iff
(1) \dot{F} is a function with $\operatorname{dom}(\dot{F})=H$ and $\dot{F}(\beta)$ is a S_{β}-Name

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q
(0) G strictly refines F
(-) $\forall \sigma \in F ; j \in \omega: p(\sigma)[j]=q(\sigma)[j]$

Definition

Let $\alpha \in O R ; H \in[\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H-Front of p iff
(1) \dot{F} is a function with $\operatorname{dom}(\dot{F})=H$ and $\dot{F}(\beta)$ is a S_{β}-Name
(3) if $\emptyset \in H$ then $F(\emptyset)$ is a front of $p(\emptyset)$

Basic Definitions

Definition

$(q, G) \leq(p, F): \Leftrightarrow$
(1) $q \leq p$
(2) F is a Front of p and G is a Front of q
(0) G strictly refines F
(-) $\forall \sigma \in F ; j \in \omega: p(\sigma)[j]=q(\sigma)[j]$

Definition

Let $\alpha \in O R ; H \in[\alpha]^{<\omega}$
For $p \in S_{\alpha}$ we call the set \dot{F} an H-Front of p iff
(1) \dot{F} is a function with $\operatorname{dom}(\dot{F})=H$ and $\dot{F}(\beta)$ is a S_{β}-Name
(0) if $\emptyset \in H$ then $F(\emptyset)$ is a front of $p(\emptyset)$
(0) for all $\beta \in H$ with $\emptyset<\beta$ we have that $p \upharpoonright \beta \Vdash F(\beta)$ is a Front of $p(\beta)$

Basic Definitions

Definition

Let $\alpha \in O R ; p, q \in S_{\alpha} ; \dot{F}, \dot{G}$ regarding H-Fronts
Define $(q, \dot{G}) \leq_{H}(p, \dot{F}): \Leftrightarrow$
(1) if $\emptyset \in H$ then $(q(\emptyset), \dot{G}(\emptyset)) \leq(p(\emptyset), \dot{F}(\emptyset))$
(2) for all $\beta \in H ; \emptyset<\beta$ we have $q \upharpoonright \beta \Vdash(q(\beta), \dot{G}(\beta)) \leq(p(\beta), \dot{F}(\beta))$

Basic Definitions

Definition

Let $\alpha \in O R ; p, q \in S_{\alpha} ; \dot{F}, \dot{G}$ regarding H-Fronts
Define $(q, \dot{G}) \leq_{H}(p, \dot{F}): \Leftrightarrow$
(1) if $\emptyset \in H$ then $(q(\emptyset), \dot{G}(\emptyset)) \leq(p(\emptyset), \dot{F}(\emptyset))$
(2) for all $\beta \in H ; \emptyset<\beta$ we have $q \upharpoonright \beta \Vdash(q(\beta), \dot{G}(\beta)) \leq(p(\beta), \dot{F}(\beta))$

Definition

Let $\alpha \in O R ; p \in S_{\alpha} ; H \in[\operatorname{supp}(p)]^{<\omega}$ and \dot{F} be a H-Front for p . We say that p is (H, \dot{F})-decided iff: For all $\bar{\sigma} \in^{H}\left(2^{<\omega}\right)$:either
(1) $\forall \beta \in H:(p \upharpoonright \beta) \upharpoonright(\bar{\sigma} \upharpoonright \beta) \Vdash \bar{\sigma}(\beta) \in \dot{F}(\beta)$ or
(2) $\exists \gamma \in H \forall \beta \in H ; \beta<\gamma:(p \upharpoonright \beta) \upharpoonright(\bar{\sigma} \upharpoonright \beta) \Vdash \bar{\sigma}(\beta) \in \dot{F}(\beta)$
$\wedge(p \upharpoonright \gamma) \upharpoonright(\bar{\sigma} \upharpoonright \gamma) \Vdash \bar{\sigma}(\gamma) \notin \dot{F}(\gamma)$

Injective continuous reading

Lemma (Wy 2011)
Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$:
$p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that

Injective continuous reading

Lemma (Wy 2011)

Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$:
$p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that
(1) $H_{i} \in[\alpha]^{<\omega} ; H_{i+1} \supseteq H_{i} ; \bigcup_{i \in \omega} H_{i}=\operatorname{supp}(q)$

Injective continuous reading

Lemma (Wy 2011)

Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$: $p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that
(1) $H_{i} \in[\alpha]^{<\omega} ; H_{i+1} \supseteq H_{i} ; \bigcup_{i \in \omega} H_{i}=\operatorname{supp}(q)$
(2) \dot{F}_{i} is a H_{i}-Front for q;

Injective continuous reading

Lemma (Wy 2011)

Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$: $p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that
(1) $H_{i} \in[\alpha]^{<\omega} ; H_{i+1} \supseteq H_{i} ; \bigcup_{i \in \omega} H_{i}=\operatorname{supp}(q)$
(2) \dot{F}_{i} is a H_{i}-Front for q;
(3) $\left(q, \dot{F}_{i+1}\right) \leq_{H_{i+1}}\left(q, \dot{F}_{i}\right)$;

Injective continuous reading

Lemma (Wy 2011)
Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$: $p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that
(1) $H_{i} \in[\alpha]^{<\omega} ; H_{i+1} \supseteq H_{i} ; \bigcup_{i \in \omega} H_{i}=\operatorname{supp}(q)$
(2) \dot{F}_{i} is a H_{i}-Front for q;
(3) $\left(q, \dot{F}_{i+1}\right) \leq_{H_{i+1}}\left(q, \dot{F}_{i}\right)$;
(1) q is $\left(H_{i}, \dot{F}_{i}\right)$-decided;

Injective continuous reading

Lemma (Wy 2011)
Let $\alpha \in O R ; p \in S_{\alpha}$ and \dot{x} a S_{α}-Name for a real such that for all $\xi<\alpha$: $p \Vdash \dot{x} \notin V_{\xi}$
Then there exits a $q \leq p$ and a Sequence $<H_{i} ; \dot{F}_{i} ; k_{i} \mid i \in \omega>$ such that
(1) $H_{i} \in[\alpha]^{<\omega} ; H_{i+1} \supseteq H_{i} ; \bigcup_{i \in \omega} H_{i}=\operatorname{supp}(q)$
(2) \dot{F}_{i} is a H_{i}-Front for q;
(3) $\left(q, \dot{F}_{i+1}\right) \leq_{H_{i+1}}\left(q, \dot{F}_{i}\right)$;
(1) q is $\left(H_{i}, \dot{F}_{i}\right)$-decided;
(6) $k_{i} \in \omega ; k_{i+1}>k_{i}$ for all $i \in \omega$

Injective continuous reading

Lemma (continued)

...and there exists a Family $\left\{\xi_{\bar{\sigma}} \in 2^{<\omega} \mid \bar{\sigma} \in \bigcup_{i \in \omega} \dot{F}_{i}\right\}$ such that

Injective continuous reading

Lemma (continued)

...and there exists a Family $\left\{\xi_{\bar{\sigma}} \in 2^{<\omega} \mid \bar{\sigma} \in \bigcup_{i \in \omega} \dot{F}_{i}\right\}$ such that
(1) for every $i \in \omega$ and $\bar{\sigma} \in \dot{F}_{i}: q_{\bar{\sigma}} \Vdash \xi_{\bar{\sigma}} \subseteq \dot{x}$

Injective continuous reading

Lemma (continued)

...and there exists a Family $\left\{\xi_{\bar{\sigma}} \in 2^{<\omega} \mid \bar{\sigma} \in \bigcup_{i \in \omega} \dot{F}_{i}\right\}$ such that
(1) for every $i \in \omega$ and $\bar{\sigma} \in \dot{F}_{i}: \quad q_{\bar{\sigma}} \Vdash \xi_{\bar{\sigma}} \subseteq \dot{x}$
(2) for every $i \in \omega$ and $\bar{\sigma} \in \dot{F}_{i}$: length $\left(\xi_{\bar{\sigma}}\right) \geq k_{i}$

Injective continuous reading

Lemma (continued)

...and there exists a Family $\left\{\xi_{\bar{\sigma}} \in 2^{<\omega} \mid \bar{\sigma} \in \bigcup_{i \in \omega} \dot{F}_{i}\right\}$ such that
(1) for every $i \in \omega$ and $\bar{\sigma} \in \dot{F}_{i}: q_{\bar{\sigma}} \Vdash \xi_{\bar{\sigma}} \subseteq \dot{x}$
(2) for every $i \in \omega$ and $\bar{\sigma} \in \dot{F}_{i}$: length $\left(\xi_{\bar{\sigma}}\right) \geq k_{i}$
(3) for two indices $\bar{\sigma}, \bar{\sigma}^{\prime}$ that are incompatible in at least one coordinate we have $\xi_{\bar{\sigma}} \perp \xi_{\bar{\sigma}^{\prime}}$

Proof of the Theorem

Reminder:
We now want to show that $V_{\omega_{2}}^{S} \models \operatorname{Cov}(I(\mathbb{S}))=\omega_{1}$

Proof.

- Let $<q_{\lambda} \mid \lambda<\omega_{2}>$ an enumeration of some arbitrary dense Set $D \in V_{\omega_{2}}^{S}$ of Sacks conditions
- Try to build a matrix $<q_{\xi \lambda} \mid \xi<\omega_{1} ; \lambda<\omega_{2}>$ with $q_{\xi \lambda} \leq q_{\lambda}$ such that for any new real $x \in V_{\omega_{2}}^{S}$ there is a row ξ with $x \notin\left[q_{\xi \lambda}\right]$ for all $\lambda<\omega_{2}$
- The sets $X_{\xi}:=2^{\omega} \backslash \bigcup_{\lambda<\omega_{2}}\left[p_{\xi \lambda}\right]$ are Sacks Ideal sets that cover all (new) reals

Proof of the Theorem

Proof continued.

- assign to each new real x a condition of the generic filter that witnesses the injective continuous reading of names and the regarding family $P:=\left\{\xi_{\bar{\sigma}} \mid \bar{\sigma} \in \bigcup_{i \in \omega} \dot{F}_{i}\right\}$ as in the previous lemma
- "throw away" the information about the exact position of the coordinates by collapsing the support of that condition to some $\delta<\omega_{1}$ and adjusting the \dot{F}_{i} and the the $\bar{\sigma}$ accordingly
- this will give us one of ω_{1}-many functions $f: \bar{\sigma} \mapsto \xi_{\bar{\sigma}}$ with [$f^{-1} x$] being a sequence of generic reals of the support (without the information where exactly they occur)

Proof of the Theorem

Proof continued.

Thin out the the q_{λ} from the dense set to some $q_{f \lambda}$ in the following way:

- Case 1: $q_{\lambda} \nsubseteq P$. You can easily find a perfect $q_{f \lambda} \leq q_{\lambda}$ with $\left[q_{f \lambda}\right] \cap[P]=\emptyset$. It follows that every new real that has the function f assigned to it is not an element of $\left[q_{f \lambda}\right]$. So we are done

Proof of the Theorem

Proof continued.

- Case 2: $q_{\lambda} \subseteq P$. Let $q_{\lambda} \in V_{\gamma}^{S}$ By a fusion argument you can thin out q_{λ} to $q_{f \lambda}^{\prime}$ such that for each coordinate $\xi<\delta$ we have $\left[\pi_{\xi} f^{-1} q_{f \lambda}^{\prime}\right] \subseteq V_{\gamma}$. This means that every real that has assigned the function f to it and is an element of $\left[q_{f \lambda}^{\prime}\right]$ is introduced in an intermediate model V_{α} with $\alpha \leq \gamma$
So if you pick a $q_{f \lambda} \leq q_{f \lambda}^{\prime}$ such that its closure is disjoint to V_{γ}, the closure wont contain any reals with the function f assigned to it

...more results

Theorem (Baumgartner Laver 1979)
Every real in $V_{\omega_{2}}^{\mathbb{S}}$ is refined by a ground model real
Corollary
$V_{\omega_{2}}^{\mathbb{S}} \models \operatorname{Cov}(I(S))=\omega_{1}$
Corollary
$V_{\omega_{2}}^{\mathbb{S}} \models \operatorname{Cov}(I(S))<\operatorname{Cov}(I(\mathbb{S}))$

open questions

- $\operatorname{add}(I(S))<\operatorname{add}(I(\mathbb{S}))$?
- $\operatorname{add}(I(S))>\operatorname{add}(I(\mathbb{S}))$?
- Is there a (non-natural) amoeba forcing for the splitting tree forcing that is proper and minimal?
- $\mathrm{ZFC} \vdash \operatorname{Cov}(I(S)) \leq \operatorname{Cov}(M)$?

Thank You for Your attention

